266 research outputs found

    On the dynamics of crystalline motions

    Get PDF
    Solids can exist in polygonal shapes with boundaries unions of flat -pieces· called· facets. Analyzing the- growth -of such crystalline shapes is an important problem in materials science. In this paper we derive equa­tions that govern the evolution of such shapes; we formulate the correspon­ding initial-value problem variationally; and we use this formulation to establish a comparison principle for crystalline evolutions. This principle as­serts that two evolving crystals one initially inside the other will remain in that configuration for all time

    Thermodynamics of non-local materials: extra fluxes and internal powers

    Full text link
    The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.Comment: 16 pages, in press on Continuum Mechanics and Thermodynamic

    A Gauge field Induced by the Global Gauge Invariance of Action Integral

    Full text link
    As a general rule, it is considered that the global gauge invariance of an action integral does not cause the occurrence of gauge field. However, in this paper we demonstrate that when the so-called localized assumption is excluded, the gauge field will be induced by the global gauge invariance of the action integral. An example is given to support this conclusion.Comment: 13 pages. Some typing errors are corrected and the format is update

    Periodic Homogenization and Material Symmetry in Linear Elasticity

    Get PDF
    Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet the symmetry group on the macroscale can contain elements other than plus or minus the identity. Another example demon- strates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.Comment: 18 pages, 5 figure

    A second order minimality condition for the Mumford-Shah functional

    Full text link
    A new necessary minimality condition for the Mumford-Shah functional is derived by means of second order variations. It is expressed in terms of a sign condition for a nonlocal quadratic form on H01(Γ)H^1_0(\Gamma), Γ\Gamma being a submanifold of the regular part of the discontinuity set of the critical point. Two equivalent formulations are provided: one in terms of the first eigenvalue of a suitable compact operator, the other involving a sort of nonlocal capacity of Γ\Gamma. A sufficient condition for minimality is also deduced. Finally, an explicit example is discussed, where a complete characterization of the domains where the second variation is nonnegative can be given.Comment: 30 page

    Three-points interfacial quadrature for geometrical source terms on nonuniform grids

    Get PDF
    International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which LpL^p-error estimates, 1p<+1\le p < +\infty, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)

    Size-structured populations: immigration, (bi)stability and the net growth rate

    Get PDF
    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin
    corecore